Band structure and high pressure study of Rh₃Sc, Rh₃Y **and Rh3La**

M. Sundareswari¹ and M. Rajagopalan2*,*^a

¹ Department of Physics, Sathyabama Deemed University, Chennai, India

² Department of Physics, Anna University, Chennai, India

Received 12 November 2005

Published online 31 January 2006 – © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. The electronic structure of the Rhodium based intermetallic compounds (A_3B) such as Rh_3Sc , Rh3Y and Rh3La are studied by the Self Consistent Tight Binding Linear Muffin Tin Orbital (TB-LMTO) method. In the present work, an attempt has been made to understand why the compounds namely Rh3Y and Rh3La crystallize in hexagonal structure, rather than the cubic structure, where as some of the similar rhodium based A₃B compounds namely Rh₃Ti, Rh₃Zr, Rh₃Hf, Rh₃V, Rh₃Nb, Rh₃Ta and Rh₃Sc are found to stabilize in cubic structure. In this work a prediction has been made about the structural phase transition in Rh3Y and Rh3La, from Hexagonal phase to Cubic phase. A report of the lattice constant, bulk moduli, cohesive energy and electronic specific heat coefficient is made and is compared with the available experimental data. Band structure and density of states histograms are also plotted. An electronic topological transition is predicted in Rh3La, which may lead to the changes in the Fermi surface topology and hence changes the physical properties of $Rh₃La$.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids – 71.15.Mb Density functional theory, local density approximation, gradient and other corrections – 71.20.Lp Intermetallic compounds

1 Introduction

Recent developments in materials processing suggest that intermetallics may be useful in structural applications where ceramics are now contemplated for use. Further numerous non-structural applications that exploit the electrical, thermal, magnetic and corrosion properties of intermetallics have also been identified. Conventionally it is the nickel based single crystal alloys which find applications in gas turbine engines; but their applications in turbine blades and vanes of modern aero engines are limited at high temperatures, due to their low melting point (∼1450 ◦C). Hence it becomes necessary to develop new materials for high temperature applications.

Recently, Yamabe-Mitarai et al. [1–8] proposed and studied a new class of single crystal alloys namely refractory super alloys, based on high melting point fcc metals such as rhodium and iridium with $L1₂$ intermetallic compounds. They are found to have a micro structure similar to the commercial Nickel based super alloys. The mechanical properties of some of the rhodium based intermetallic compounds were studied by Miura et al. [9]. High pressure ab initio study of the electronic structure of the rhodium based and iridium based intermetallic compounds were studied by Rajagopalan et al. and Sundareswari et al. [10,11] respectively. The elastic properties of iridium and rhodium based intermetallic compounds were studied by Chen et al. [12,13]. In order to achieve excellent fatigue properties, the turbine blades should be made of materials of low thermal expansion and high thermal conductivity. Studies on rhodium based alloys, showed that they have low density, better oxidation resistance, lower thermal expansion, higher thermal conductivity [14] and high melting point (∼2450 ◦C), which make them serve as promising structural materials for ultra high temperature gas turbine applications. Having studied the band structure of rhodium based intermetallic compounds with V group and IV group transition metals, we intend to extend our study with the III group elements such as Sc, Y and La and try to compare their physical properties. To our knowledge, neither the experimental nor the theoretical study on Rh_3Sc , Rh_3Y and Rh_3La is available in the related literature. Hence the present study is focused on the intermetallic compounds namely, $Rh₃Sc$, $Rh₃Y$ and Rh3La, in order to throw more light on their electronic and physical properties by computing the band structure, density of states, bulk modulus, cohesive energy, etc. using the TB-LMTO method. It is believed that the results may be of interest to materials researchers.

e-mail: mraja1948@yahoo.co.in

Table 1. Compound/ Position of the atoms Space group No. $Rh₃Sc$ (221) Sc (0, 0, 0) Rh (0, 0.5, 0.5) Rh_3Y Rh $(0, 0, 0)$ (194) Rh1 (0, 0, 0.25) Rh2 (0.333, 0.667, 0.75)

	Rh ₂ (0.333, 0.667, 0.75)
	Rh3 (0.8334, 0.6668, 0.1272)
	Y(0.333, 0.667, 0.25)
	Y1(0.333, 0.667, 0.0418)
Rh ₃ La	Rh(0, 0, 0.5)
(166)	Rh1(0, 0, 0.3344)
	Rh2(0.504, 0.496, 0.0818)
	La $(0, 0, 0)$
	La1 $(0, 0, 0.1402)$

2 Computational details

2.1 Structure aspects

It was reported experimentally $[15,16]$ that Rh₃Sc crystallizes in $Cu₃Au$ type (cubic) structure, $Rh₃Y$ in $CeNi₃type$ $(hexagonal)$ structure, whereas $Rh₃La$ to exist in two phases namely Be3Nb type and CeNi³ type structures The space group, experimental lattice parameters and position of the atoms of each compound, which are taken from the above mentioned work, are given in the Tables 1 and 2.

2.2 Methodology

In this work, the Tight Binding Linear Muffin Tin Orbital method [17–19] is employed to compute the electronic structure of the compounds Rh_3Sc , Rh_3Y and Rh_3La ; here the Stuttgart code-lmto47l is applied to do the computations. The electronic structure and the total energies within the atomic sphere approximation (ASA) are obtained in a manner similar to our earlier work [20]. In the atomic sphere approximation [21,22], the crystal is divided into space filling spheres centered on each of the atomic sites. Also combined corrections are included in it, which account for the non-spherical shape of the atomic spheres and the truncation of the higher partial waves inside the spheres, to minimize the errors in the LMTO method. The Wigner-Seitz sphere radii are chosen in such a way that the sphere boundary potential is minimum, and the charge flow between the two atoms is in accordance with the electro negativity criteria. The s, p, d and f partial waves are included in the computation. The exchange correlation potential within the local density approximation (LDA) is calculated using the parameterization scheme of von Barth and Hedin [23]. All important relativistic corrections except spin-orbit coupling are included. The tetrahedron method was used to calculate the density of states (DOS) [24]. The E and K convergence are also checked.

The total energies of $Rh₃Sc$, $Rh₃Y$ and $Rh₃La$ are calculated by reducing the cell volume. For the non-cubic structures, the experimental c/a ratio is used in all

our calculations. The accuracy of total energies obtained within the density functional theory is sufficient to predict which structure at a given pressure has the lowest free energy [25]. The computed total energies for each of these compounds are fitted to the Birch equation of state [26], to obtain the pressure volume relation and the enthalpy values. The bulk modulus (B_0) is obtained using the relation,

$$
B_0 = -V_0 \frac{dP}{dV}.
$$

The theoretically calculated equilibrium lattice parameter and bulk moduli of each of these compounds are presented in the Table 2 and are compared with the available experimental data. It was found that there is a good agreement between them. From table, one can observe that the error in the calculated values of the lattice parameters vary from a minimum of 0.9% to a maximum of 1.7%. The experimental lattice parameters are calculated at room temperature, whereas the calculations are done at 0 K. Hence one can expect such deviation in the calculated lattice parameter values.

Further, from the fitted values, the enthalpy and pressure values are also noted for both the structures of the given compound between which a structural transition is expected. Graphs are drawn between the values of enthalpy and pressure, in $Rh₃Y$ and $Rh₃La$, each for cubic and hexagonal structures of the given compound and are shown in Figures 1 and 2. From the graphs, it is understood that the enthalpy of both the structures of the given compound remain the same at one particular pressure, namely the transition pressure and is found to be about 108 kbar for $Rh₃Y$ and 187 kbar for $Rh₃La$.

3 Results and discussions

3.1 Total energy and the nearest neighbour distance calculations

The total energies of Rh₃Sc in the cubic structure, $Rh₃Y$ in the hexagonal structure and $Rh₃La$ in hexagonal and rhombohedral structures are calculated by reducing the cell volume and are plotted as shown in the Figures 3(a–d). Except Rh_3Y and Rh_3La , the other similar rhodium based Rh3X intermetallic compounds (where $X = Ti$, Zr , Hf, Nb, Ta and Sc) are reported experimentally to stabilize in $AuCu₃$ type structure [15]. Hence, we have examined whether the compounds namely $Rh₃Y$ and Rh3La, will undergo a structural phase transition to cubic structure under compression. The variation in total energy of cubic $Rh₃Y$ and $Rh₃La$ are shown in the Figures 3b and 3c along with that of their hexagonal phase. From the Figures 3b and 3c, it is clear that, a phase transition from hexagonal to cubic structure occurs in $Rh₃Y$ and $Rh₃La$, which is predicted to be about 108 kbar and 187 kbar respectively for $Rh₃Y$ and $Rh₃La$ (refer Figs. 1, 2). To analyze further, the nearest neighbour distance is calculated, under compression, in both the compounds namely $Rh₃Y$ and Rh3La, for CeNi³ type structure and for cubic structure (refer Tabs. 3 and 4). From the tables, one can observe that in each of the compounds, the nearest neighbour distance decreases with compression, for both the structures.

M. Sundareswari and M. Rajagopalan: Band structure and high pressure study of Rh₃Sc, Rh₃Y and Rh₃La 69

Compound	Lattice parameter (au)		Bulk
			Modulus (B_0)
	Expt.	Calculated	(Mbar)
		(present)	
Rh_3Sc - $(Cubic)$	$a = 7.371$	$a = 7.301$	2.331
Rh_3Y -(Hexagonal)	$a = 9.887$	$a = 9.723$	2.155
	$c = 32.854$	$c = 32.311$	
$Rh3La-(Hexagonal)$	$a = 10.029$	$a = 9.956$	1.7382
	$c = 33.253$	$c = 33.011$	
$Rh3La-(Rhombohedral)$	$a = 10.068$	$a = 9.974$	1.7385
	$c = 50.019$	$c = 49.549$	

Table 2. Bulk Modulus (B_0) is obtained from the fit of total energy to the Birch equation of state.

Enthalpy Vs Pressure for Rh₃Y

In the case of Rh₃Y, at $V/V_0 = 0.85$ (which corresponds to a pressure of about 108 kbar, at which the transition is predicted) and in Rh₃La, at $V/V_0 = 0.8$ (which corresponds to a pressure of about 187 kbar, at which the transition is predicted) the value of nearest neighbour distance is found to be 5.18 au (for Rh_3Y) and 5.15 au (for Rh_3La).

Table 3.

V/V_{α}	Nearest neighbour distance (au) in $Rh3Y$ at various compressions			
	Cubic	Hexagonal		
1.0	5.472	5.871		
0.95	5.380	5.771		
0.90	5.284	5.668		
0.85	5.184	5.561		
0.80	5.080	5.450		
0.75	4.972	5.334		
0.7	4.859	5.213		

These values are very close to the nearest neighbour distance value, in which the other Rh_3X compounds (where $X = Ti$, Zr , Hf , V , Nb , Ta and Sc) crystallize in the cubic phase at ambient condition (refer Tab. 5). This may be one of the reasons why the compounds $Rh₃Y$ and $Rh₃La$ prefer to undergo transition from hexagonal to cubic phase, each at the above mentioned compression, when their corresponding nearest neighbor distance values lie closer to that of the other Rh_3X compounds (where $X = Ti$, Zr, Hf, V, Nb, Ta and Sc) which are found to crystallize in the cubic phase at ambient condition.

The total energy variation of $Rh₃La$ for the two experimentally reported structures, namely CeN_{i3} type (hexagonal) and Be3Nb type (rhombohedral) are shown in the Figure 3d. From this plot, we conclude that at ambient, the hexagonal phase is energetically more stable than the other phase. It was found that the energy difference between these two phases is about 32.7 mRyd.

To conclude, it can be stated that there is no possibility for the compounds Rh_3Y and Rh_3La to exist in cubic structure, at ambient condition, because of the following reasons (i) the nearest neighbour distance values at ambient condition in the cubic structures of $Rh₃Y$ and $Rh₃La$ (5.31 au and 5.34 au respectively) are not close to

Total Energy Vs V/V_o for Rh₃La

Table 5.				
Compound	Nearest neighbour			
	distance (au) at			
(Cubic)	ambient condition			
Rh ₃ Ti	5.070			
Rh ₃ Zr	5.202			
Rh ₃ Hf	5.195			
Rh_3V	5.010			
Rh_3Nb	5.121			
Rh_3Ta	5.127			
Rh_3Sc	5.163			

∗Data obtained from the theoretically generated lattice parameter of the given compound.

 Rh_3Y 5.311[∗] Rh₃La 5.338[∗]

the value in which the other Rh_3X compounds stabilize in cubic structure (refer Tab. 5); (ii). the nearest neighbour distance values for CeNi₃ type structures of $Rh₃Y$ and Rh3La (5.77 au and 5.94 au respectively) are found to be too large for a compound to crystallize in cubic structure.

3.2 Band structure calculations and density of states

The self-consistent band structure of $Rh₃Sc$ (cubic), $Rh₃Y$ and Rh3La (in hexagonal phase) compounds at ambient condition are obtained using the TB-LMTO method along the higher symmetry directions and are shown in the Figures 4 to 7. In Rh3Sc, the lowest lying bands around [−]0.4 Ryd. are due to Rh-s and Sc-s like electrons. The bands just above are the bands due to Rh-p and Sc-p like electrons. The bands around [−]0.26 Ryd. are due to Rhd and Sc-d like electrons. The band profile of Rh3Y and $Rh₃La$ are found to be similar, except in $Rh₃La$, where, along M to G, K to M and L to H, the bands due to Rh-d like electrons are found to oscillate under pressure at the Fermi level and are explained as follows. The band profile of Rh₃La for three compressions, namely 0.9 V_0 , 0.8 V_0 and 0.75 V_0 are shown in Figures 7a to 7c. At ambient condition, (Fig. 6), the Rh-d band, at G just touches the

 $_{\rm G}$

 Λ

 $\mathbf M$

 $\mathbf k$

 $_{\rm H}$

 \mathbf{L}

 -0.015

 -0.02

 \boldsymbol{G}

M. Sundareswari and M. Rajagopalan: Band structure and high pressure study of Rh₃Sc, Rh₃Y and Rh₃La 71

Fig. 6. Band structure of Rh₃La at ambient condition.

Fig. 7. (a) Band structure of Rh₃La at $V/V_0 = 0.9$. (b) Band structure of Rh₃La at $V/V_0 = 0.8$. (c) Band structure of Rh₃La at $V/V0 = 0.75$.

M. Sundareswari and M. Rajagopalan: Band structure and high pressure study of Rh₃Sc, Rh₃Y and Rh₃La 73

Table 6.						
Compound	$N(E_f)$	Elect. Sp. heat	Cohesive energy			
	(States/Ryd/cell)	Co-efficient (γ)	(eV/FU)			
		(mJ/mol k ²)				
Rh_3Sc - $(Cubic)$	49.778	8.623	-42.349			
Rh_3Y -(Hexagonal)	39.395	6.825	-34.106			
$Rh3La-(Hexagonal)$	34.470	5.972	-34.000			
Rh3La-(Rhombohedral)	32.230	5.584	-33.920			

Fig. 8. Total and partial density of states of Rh₃Sc.

Fig. 9. Total and partial density of states of Rh₃Y.

Fermi level and further compressions (Figs. 7a to 7c) show that at G and along M to G, the band crosses the Fermi level and moves into the Fermi level. Further, along K to M and L to H, the bands are found to move up and at $V/V_0 = 0.75$ they tend to touch the Fermi level along L to H. Since some of the Rh-d bands cross the Fermi level during compression, it may change the Fermi surface topology of this compound.

The total and partial DOS of each of $Rh₃Sc$, $Rh₃Y$ and Rh3La compounds are shown in the Figures 8 to 10. In the histograms, the peaks of total DOS that lie be-

Fig. 10. Total and partial density of states of Rh₃La.

Fig. 11. Variation of total density of states at E_f with compression for Rh₃La.

low the Fermi level are mainly due to Rh-d like electrons. Since in Rh3La, some of the bands cross the Fermi level under compression, there may be an electronic topological transition or Lifshitz type of transition [27] where it may also influence the monotonic variation of DOS at E_f . Physical properties such as electronic specific heat coefficient that involve the DOS at E_f , may get altered during compression due to such variation in the DOS. Figure 11 shows such variation of total density of states at E_f with compression for Rh₃La. The total density of states at E_f decreases continuously with pressure till $V/V_0 = 0.95$ and further compression leads to increase in the DOS at E_f and reaches a maximum at $V/V_0 = 0.8$ and decreases on further compression. A similar behaviour was observed by Rajagopalan et al for phosphorus [28], by Chu et al for rhenium [29], by Makarow et al for thallium [30] and by

Sahu et al for CeAl₂ [31]. Further, this kind of electronic topological transition may be used suitably to improve the thermo electric properties of certain materials [32].

3.3 Bulk modulus and cohesive energy calculation

The calculated bulk moduli values of each of the compounds Rh_3Sc , Rh_3Y and Rh_3La are listed in Table 2, from which it is noticed that the bulk moduli value decreases as one goes from $Rh₃Sc$ to $Rh₃La$. The same trend is also seen in the bulk moduli values of the elemental solids namely Sc, Y and La [33]. In general, the bulk modulus could be used as a measure of the average bond strengths of atoms of the given crystal [34]. Then one can say that the average bond strength of Rh_3Sc is more compared to $Rh₃Y$ and $Rh₃La$. A similar study for Ir₃X and Rh₃X (where $X = Ti$, Zr, Hf, V, Nb, Ta) intermetallic compounds are reported recently by Kuiying Chen et al. [13,14]. The bulk moduli values reported by us [11,12] for Ir_3X and Rh_3X intermetallic compounds find good agreement with these values.

It is known that the cohesive energy (E*coh*) is the difference between the free atom energy and the crystal energy. For each of the compounds, $Rh₃Sc$, $Rh₃Yand Rh₃La$, the cohesive energy is calculated as follows: the total en- ergy is obtained by solving semi — relativistic Schrödinger equation, first for the given compound and then for the free atom. The difference between them gives the cohesive energy of the given compound. In the present work, the cohesive energies are calculated for one formula unit; one formula unit consists of four atoms. The cohesive energy values of Rh_3Sc , Rh_3Y and Rh_3La are tabulated in the Table 6. The E*coh* of rhodium, scandium, yttrium and lanthanum are found to be 5.75, 3.9, 4.37 and 4.47 in ev/atom respectively [33]. One can compare the cohesive energy values of the compounds with that of its constituent atoms. A similar comparison is reported for PtN by Jamal Uddin et al. [35]. The cohesive energy of $Rh₃La$, in rhombohedral and hexagonal structures are calculated and are given in Table 6, from which it can be said that, the hexagonal $Rh₃La$ is more stable than rhombohedral Rh3La.

Further, at transition (where $V/V_0 = 0.8$), the cohesive energy of $Rh₃La$ is calculated for both cubic $(2.40 \text{ Ryd}/\text{FU})$ and hexagonal structure $(2.38 \text{ Ryd}/\text{FU})$ from which it is clear that cubic structure is more stable than hexagonal structure at the transition.

3.4 Electronic specific heat coefficient

At temperatures, much below the Debye temperature, the specific heat capacity of material is given as the sum of the electronic and lattice contribution [33], viz. $C = \gamma T + AT^3$, where γT represents the electronic contribution, AT^3 represents the lattice contribution and γ represents the electronic specific heat coefficient. The electronic specific heat coefficient (γ_{th}) for each of Rh₃Sc (cubic), Rh₃Y and Rh3La (hexagonal) compounds is calculated at ambient conditions using the expression,

$$
\gamma_{th} = \pi^2 k_B^2 N(E_f)/3,
$$

where $N(E_f)$ represents the density of states at the Fermi level and k*^B* is the Boltzmann constant. For lack of experimental data, the present results are not compared. If experimental results for γ are available, one can estimate the electron-phonon mass enhancement factor (λ) using the expression,

$$
\gamma_{exp.} = \gamma_{th.}(1+\lambda).
$$

The electronic specific heat coefficient of $Rh₃Sc$, $Rh₃Y$ and Rh3La are calculated and tabulated in Table 6.

4 Conclusion

Systematic Tight Binding Linear Muffin Tin Orbital (TB-LMTO) calculations have been performed on the intermetallic compounds such as Rh_3Sc , Rh_3Y and Rh_3La as a function of reduced volume. The theoretically calculated equilibrium lattice parameter of each of these compounds is found to agree with the experimental values. The theoretically arrived bulk moduli values of these compounds shows that the bulk modulus and hence the average bond strength decreases from Rh₃Sc to Rh₃La. In other words, it follows the same trend as that of the elemental solids namely scandium, yttrium and lanthanum. A phase transition is predicted for $Rh₃Y$ and $Rh₃La$, from hexagonal to cubic structure at a pressure of about 108 kbar and 187 kbar respectively. Of the two experimentally reported structures of $Rh₃La$, namely $CeNi₃$ type and $Be₃Nb$ type, at ambient condition, the CeNi³ type hexagonal structure is found to be more stable than the other. It is because the cohesive energy is more (and total energy is minimum) for $CeNi₃$ type hexagonal structure. It is clear from the above study that for hexagonal Rh3La, under pressure, the Fermi surface topology can be changed, since some of the Rh-d bands cross the Fermi level under compression. A change in the Fermi surface topology then lead to some changes in the physical and thermo dynamical properties of Rh3La under pressure. The change in the Fermi surface topology of Rh₃La is reflected in the total density of states at E_f , which leads to a Lifshitz type of transition. From the computed partial number of electrons at different sites, it is found that, under pressure, there is a continuous transfer of d-like states from A (Rh)-site to B (Sc, Y and La)-site, which may trigger a structural phase transition, and change the nature of chemical bonding in these compounds.) Therefore it is suggested to perform high-pressure X-ray diffraction studies of these compounds, to determine the phase stability, the nature of the chemical bonding of these compounds and also to verify the bulk moduli values of these compounds. It is also suggested to measure the electronic specific heat coefficient of these compounds to determine the electron-phonon mass enhancement factor.

M. Sundareswari and M. Rajagopalan: Band structure and high pressure study of Rh₃Sc, Rh₃Y and Rh₃La 75

References

- 1. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scripta Metall **35**, 211 (1996)
- 2. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, H. Harada, Metall Mater Trans. A **29**, 537 (1998)
- 3. Y. Yamabe-Mitarai, S. Nakazawa, H. Harada, Scripta Metall **43**, 1059 (2000)
- 4. Y.F. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, H. Harada, Scripta Metall. **40**, 1313 (1999)
- 5. Y. Yamabe-Mitarai, S. Nakazawa, H. Harada, Solid Mech. Mater. Eng. **45**, 1 (2002)
- 6. Y. Yamabe-Mitarai, Y. Ro., T. Maruko, T. Yokokawa, H. Harada, Structural Intermetallics, TMS, 805 (1997)
- 7. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, H. Harada, Scripta Mat. **36**, 393 (1997)
- 8. Y. Yamabe-Mitarai, M.H. Hong, Y. Ro, H. Harada, Phill. Mag. Lett. **79**, 673 (1999)
- 9. S. Miura, K. Honma, Y. Terada, J.M. Sanchez, T. Mohri, Intermetallics **8**, 785 (2000)
- 10. M. Rajagopalan, M. Sundareswari, J. Alloys and Comp. **379**, 8 (2004)
- 11. M. Sundareswari, M. Rajagopalan, Int. J. Mod. Phys. B **19**, 4587 (2005) (World Scientific Publishing Company)
- 12. K. Chen, L.R. Zhao, J.S. Tse, J. Appl. Phys. **93**, 2414 (2003)
- 13. K. Chen, L.R. Zhao, J.S. Tse, J.R. Rodgers, Phys. Lett. A **331**, 400 (2004)
- 14. Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez, T. Mohri, J. Alloys Comp. **354**, 202 (2003)
- 15. P. Villars, L.D. Calvert, *Pearson's Handbook of Crystallographic Data for Intermetallic Phases* (ASM International, Metals Park, OH, 1985)
- 16. Singh, Raman, Trans. Met. Soc. AIME **245**, 1561 (1969)
- 17. O.K. Andersen, O. Jepsen, Phy. Rev. Lett. **53**, 2571 (1984)
- 18. O.K. Andersen, Z. Pawlowska, O. Jepsen, Phy. Rev. B **34**, 5253 (1986)
- 19. H.J. Nowak, O.K. Andersen, T. Fujiwara, O. Jepsen, P. Vargas, Phys. Rev. B **44**, 3577 (1991)
- 20. Sk. Khadeer Pasha, M. Sundareswari, M. Rajagopalan, Physica B **348**, 1-4, 206 May (2004)
- 21. O.K. Andersen, Phys. Rev. B. **12**, 3060 (1975)
- 22. H.L. Skriver, *The LMTO Method* (Springer, Heidelberg, 1984)
- 23. U. von Barth, L. Hedin, J. Phys. C **5**, 1629 (1972)
- 24. O. Jepsen, O.K. Andersen, Solid State Communications **9**, 1763 (1971)
- 25. N.E. Christensen, D.L. Novikou, R.E. Alonso, C.O. Rodriguez, Phys. Stat. Solidi (b) **211**, 5 (1999)
- 26. F. Birch, J. Geophys. Rev. **⁸³**, 1257 (1978)
- 27. I.M. Lifshitz, Sov. Phys. JETP **11**, 1130 (1960)
- 28. M. Rajagopalan, M. Alouani, N.E. Christensen, J. Low Temp. Physics **75**, 1 (1989)
- 29. C.W. Chu, T.F. Smith, W.E. Gardner, Phys. Rev. B **1**, 214 (1970)
- 30. V.I. Makarow, V.G. Barlyakhtar, Sov. Phys. JETP **21**, 1151 (1965)
- 31. P.Ch. Sahu, N.V. Chandra Shekar, Pramana **54**, 685 (2000)
- 32. N.V. Chandra Shekar, D.A. Polvani, J.F. Meng, J.V. Badding, *Advances in High pressure Science and Technology*, edited by A.K. Bandyopadhyay, D. Varandani, K. Lal (National Physics Laboratory, New Delhi, 2001) pp. 310–314
- 33. Charles Kittel, *Introduction to Solid state physics*, 7th edn. (John Wiley & Sons, Inc. 1996)
- 34. D.G. Cierc, H.M. Ledbetter, J. Phys. Chem. Solids **59**, 1071 (1998)
- 35. J. Uddin, G.E. Scuscria, Phys. Rev. B **72**, 035101 (2005)